KMS Technologies

A Fit-for-purpose electromagnetic System for Reservoir Monitoring & Geothermal Exploration

Kurt M. Strack and Ingo M. Geldmacher 2017

13th China International Geo-Electromagnetic Workshop, 871-882.

FOR SELF STUDY ONLY

© 2020 KMS Technologies

A Fit-for-Purpose Electromagnetic System for Reservoir Monitoring & Geothermal Exploration

K. Strack & I. Geldmacher KMS Technologies

November 2017

Background >>> Case histories >>> Conclusion Objectives

> Address Reservoir Monitoring & Exploration for Hydrocarbon & Geothermal

- > Methods required:
 - Broadband magnetotellurics
 - Controlled source ElectroMagnetics
 - Microseismics
 - Others: for research/marketing (TFEM, IP, CSAMT etc.)
- > Operations:

Be able to use seismic crews/standards
Broadband: DC to 40 kHz in one drop
Unlimited number of channels

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion History KMS array system KMS-820 and LEMI sensors

RFIVER

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion GOAL Dense acquisition ($\Delta x = 50 \text{ m}$) \rightarrow better images Fully integrated Hi-res MT, gravity and seismic – KMS survey 2002

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Seismic-style modular ARRAY acquisition → better images

- Wireless (long range & WIFI)
- True nodal array system

equency

- Large dynamic range (up to 32 bits)
- High bandwidth (DC to 40 kHz)
- Low power

Initial funding by Geopkinetics Inc.

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Featured array configurations: MT fit for purpose

- Advanced MT/AMT
 - Standard MT 0.0001 Hz to 20 kHz
 - Low noise < 0.1 pT/VHz
 - Fast AMT acquisition 10 Hz to 20 kHz
 - Max flexibility
 - Max connectivity
 - Deep coverage > 10 km
 - Use AMT for static if HF is ok

Mini MT & AMT

- Introductory, low cost system
- Low frequency fluxgate DC to 180 Hz
- AMT 'roving' receiver broadband magnetometer 1 Hz-500 kHz
- Resolves deep & shallow
- Fast set-up, no digging, match & correlate system response continuity

- Broadband MT
 - ONE MT/AMT sensor 0.00025 Hz to 10 kHz
 - Good if limited high/low required
 - Reduces cost
 - Simplifies operations
 - Potential signal 'gap' when using amplifier switching or separate bands. TRUE broadband the best solution

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Featured broadband MT array configurations

KMS-820 acquisition unit

4 electrodes

32-bit 3C fluxgate (KMS-029) Low frequency acquisition (DC~180 Hz)

KMS-820 acquisition unit

Plus Fluxgate = 11 channels Many Fluxgate options

© 2009- 2017 KMS Technologies

Background >>> Case histories >>> Conclusion China (ZB): Resistivity coil & fluxgate with sampling rate 62.5 Hz. PHASE

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Receiver (KMS-820 array system): for MT & CSEM

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Reservoir Monitoring: 195 channel monitoring system

RESERVOIR MONITORING

ARRAY Electromagnetics

- 195 channels, wifi, wireless or LAN
- 3C magnetic field (DC to 40 kHz)
- 3C microseismic
- 2C electric fields
- Shallow borehole (microseismic/EM)

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Reservoirs seal: EM & microseismic from seal fatigues

After Carlson, 2013

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion EXAMPLE: Geologic schematic

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Example layout

Site	KMS instrument	Ex & Ey	Hz	3C fluxgate H	3C geophone
	820	x	x	x	x
	831	x	ÿ		x

E – electric field sensors H – magnetic field sensors

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Reservoir Monitoring: Raw data example: microseismic/EM monitoring

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Seismic data samples KMS-831

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Reservoir Monitoring: Magnetic field sees water flood influence

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion NEXT: FSEM: Focused source solution for CORRECT volume imaging

Rykhlinskaya, E., & Davydycheva, S., 2014, U.S. Patent 8,762,062 B2. Davydycheva, S., 2016, U.S. Patent Application US 2016/0084980 A1 – allowed 10/2017.

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion FSEM: Focused source solution to volume imaging

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Alternative: Shallow borehole tool - Ez

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion 195 channel monitoring system: Technology

- Sub-acquisition box: KMS-831 (32-bit, n* 3 channels; cabled to node)
- Sensors: magnetic, electric fields, air loops, small 3C fluxgate magnetometers, 3C geophones
- Telemetry: WIFI (2 options), long range wireless, LAN

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion 195 channel monitoring system: Challenges

Detailed logs required
Well sketches needed
EOR pumping rates
This calibrates 3D model
A LOT of 3D modeling and reservoir engineering to close the loop

Time (ms)

Sub-salt >> Shale >> Sub-basalt >> Geothermal >> Basin study USA Texas: salt dome structure – known part

Southwest

Deussen A. et al.

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion USA Texas: Direct Warren- ANISOTROPIC reduced well log model

RV

direct warren log meter

10000

© 2009- 2017 KMS Technologies

RH

200

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion USA Texas: MT system

© 2009- 2017 KMS Technologies

Sub-salt >> Shale >> Sub-basalt >> Geothermal >> Basin study Hockley salt dome: Output of inversion - Station 10

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Focused source solution to volume imaging

Duty circle= 50%

© 2009- 2017 KMS Technologies

> 15 years of excellence in electromagnetic R&D

Paembonan et al., 2017

29

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion FSEM: Preliminary 3D results

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Limit of 1D versus 3D: Inversion -Rx1 – Ex Hockley 5/5/2015

© 2009- 2017 KMS Technologies

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Limit of 1D versus 3D: Inversion statistics -Rx1 – Ex Hockley 5/5/2015

	P1	P2	P3		P5	P6	P7	P8	P9
ρ1	0.015	-0.798	0.221	-0.309	0.441	-0.154	0	0	0
ρ ₂	0.308	0.124	0.062	-0.057	-0.179	-0.922	0.001	0	0
ρ ₃	0.111	0.201	-0.148	-0.936	-0.17	0.146	0	0	0
ρ ₄	0	0	0.001	0	0	-0.001	-0.87	0.493	-0.001
ρ ₅	0	0	0	0	0	0	0.003	0.007	1
h ₁	-0.5	0.446	-0.06	-0.117	0.691	-0.238	0	0	0
h ₂	0.8	0.201	-0.109	0.089	0.517	0.181	0	0	0
h ₃	-0.054	-0.259	-0.954	0.067	0.014	-0.124	-0.001	0.001	0
h ₄	0	0	0	0	0	0	-0.493	-0.87	0.008
Damping Factor	1	1	0.975	0.644	0.007	0.001	0	0	0
Resolved combination	$h_{2^*}\rho_{2/}h_1$	h_{1/ρ_1}	1/ h3	1/p ₃					

Effective parameter: 3.6

#Layer no	Resistivity	Thickness	Anisotropy	
1	0.21	24.15	1	111
2	60.11	15.53	1	7
3	0.31	491.69	1	4
4	500.11	3000.29	1	
5	1999.73	0	1	'

0.1

1

Calibration factor: 1.0000
Tx-Distortion Txx: 1.0000
© #Tx-Distortion Txys 0:0000 logies
Error: 1.023

1000 10000

100

10

resistivity / Ωm

Background >>> Reservoir monitoring >>> Sub-salt >>> Conclusion Hockley conclusion

Clearly see an overhang on NE salt flank
 Multiple EM methods indicate this
 Field data was only equipment test
 More shallow and array data required

Acquire denser data – EM with seismic et al. – Lower cost > Bring back CSEM > Use EM for monitoring > Integrate surface with borchole

Courtesy E. Gasperikova, 2012

© 2009- 2017 KMS Technologies

Thanks to supporters of various parts: Aramco, DeepLook consortium (BP, Chevron, ConocoPhillips, Shell), ENI, Geokinetics, Ormat, PTTEP, Shell, WellDynamics ...and all KMS staff.

All technology protected by US & Foreign patents (see KMS Technologies website) 7. November 2017

KMS Technologies – KJT Enterprises Inc. 11999 Katy Freeway, Suite 160 Houston, Texas 77079 USA

info@KMSTechnologies.com

www.KMSTechnologies.com

© 2020 KMS Technologies